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The Fluctuation Theorem as a Gibbs Property
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Common ground to recent studies exploiting relations between dynamical
systems and nonequilibrium statistical mechanics is, so we argue, the standard
Gibbs formalism applied on the level of space-time histories. The assumptions
(chaoticity principle) underlying the Gallavotti�Cohen fluctuation theorem
make it possible, using symbolic dynamics, to employ the theory of one-dimen-
sional lattice spin systems. The Kurchan and Lebowitz�Spohn analysis of this
fluctuation theorem for stochastic dynamics can be restated on the level of the
space-time measure which is a Gibbs measure for an interaction determined by
the transition probabilities. In this note we understand the fluctuation theorem
as a Gibbs property, as it follows from the very definition of Gibbs state. We
give a local version of the fluctuation theorem in the Gibbsian context and we
derive from this a version also for some class of spatially extended stochastic
dynamics.

KEY WORDS: Fluctuation theorem; large deviations; nonequilibrium; Gibbs
states.

1. CONTEXT AND MAIN OBSERVATIONS

1.1. Scope

The fluctuation theorem of Gallavotti and Cohen, see refs. 10, 11, and 26,
asserts that for a class of dynamical systems the fluctuations in time of the
phase space contraction rate obey a general law. We refer to the cited
literature for additional details and precision and we only sketch here the
main ingredients.
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One considers a reversible smooth dynamical system ! � ,(!), ! # 0.
The phase space 0 is in some sense bounded carrying only a finite number
of degrees of freedom (a compact and connected manifold). The transfor-
mation , is a diffeomorphism of 0. The resulting (discrete) time evolution
is obtained by iteration and the reversibility means that there is a diffeo-
morphism % on 0 with %2=1 and % b , b %=,&1. Consider now minus the
logarithm of the Jacobian determinant J which arises from the change of
variables implied by the dynamics. We write S4 #&log J. One is interested
in the fluctuations of

wN(!)#
1

\(S4 ) N
:
N�2

&N�2

S4 (,n(!)) (1.1)

for large time N. Here, \ is the stationary probability measure (SRB
measure) of the dynamics with expectations

\( f )=lim
N

1
N

:
N

0

f (,n!) (1.2)

corresponding to time-averages for almost every randomly chosen initial
point ! # 0. This random choice refers to an absolutely continuous measure
with respect to the Riemann volume element d! on 0 (and is thought of
as describing the microcanonical ensemble for 0 the energy surface). S4 (!)
is the phase space contraction rate (which is identified with the entropy
production rate) and one assumes (and sometimes proves) dissipativity:

\(S4 )>0 (1.3)

It is assumed that the dynamical system satisfies some technical (ergodic)
condition: it is a transitive Anosov system. This ensures that the system
allows a Markov partition (and the representation via some symbolic
dynamics) and the existence of the SRB measure \ in (1.2). This technical
assumption is not taken physically very serious but instead it is supposed
to guide us towards general results which are true in a broader context.3

That is what is affirmed in the so called chaotic hypothesis: ``A reversible
many particle system in a stationary state can be regarded as a transitive
Anosov system for the purpose of computing the macroscopic properties,''
see also e.g., refs. 10, 11, 7, 6, 25, and 9. The fluctuation theorem then states
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likely to be false in quite a number of realistic situations and in any event it is irrelevant.
Nevertheless assuming ergodicity can lead to correct consequences.



that wN(!) has a distribution \N(w) with respect to the stationary state \
such that

lim
N

1
N\(S4 ) w

ln
\N(w)

\N(&w)
=1 (1.4)

always. In other words, the distribution of entropy production over long
time intervals satisfies some general symmetry property.

This theorem originated from numerical evidence, e.g., in ref. 5, and it
has various interesting consequences. For example, in ref. 7, it was inter-
preted as extending the Green�Kubo formulas to arbitrary forcing fields for
a class of non-equilibrium dynamics.

In ref. 16, Kurchan pointed out that this fluctuation theorem also
holds for certain diffusion processes. This is the context of finite systems
undergoing Langevin dynamics. This was extended by Lebowitz and Spohn
in ref. 19 to quite general Markov processes. There was however no general
scheme for identifying the quantity (being some analogue of (1.1)) for
which the fluctuation theorem holds. Yet, from applying the fluctuation
theorem in this context to simple models of stochastic dynamics, relations
appeared between the entropy production and the action functional satis-
fying the theorem.

In this note we understand the fluctuation theorem within the Gibbs
formalism. Since this formalism is often considered as giving a mathemati-
cal structure to the theory of equilibrium statistical mechanics and in
order to avoid misunderstanding, we insist from the beginning that we
wish to see this Gibbs formalism applied here to nonequilibrium condi-
tions. The right way of looking at it, is to consider space-time histories
drawn from a Gibbs measure. In other words, our analysis is not to be
regarded as an investigation of fluctuations in an equilibrium system or as
the restriction of the fluctuation theorem to equilibrium conditions. On the
contrary, the observations we make can be seen as underlying and (at least
in some sense) extending both the Gallavotti�Cohen and the Kurchan and
Lebowitz�Spohn fluctuation theorems. Underlying because the technical
conditions of the Gallavotti�Cohen work reduce to a large extent the fluc-
tuation theorem to a statement about one-dimensional Gibbs measures.
That is not very different in the Lebowitz�Spohn work where the strong
chaoticity is replaced by stochasticity and the Perron�Frobenius theorem is
applied to the dynamical generator as it is usually done for the transfer
matrix in one-dimensional Gibbs states. The fact that something more
general and typical of Gibbs states is at work here was already announced
in Section 3 of ref. 1 where Example 1.2 below was applied to the one-
dimensional Ising model in an external field. Our work systematizes this
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remark. But for Gibbs states, the fluctuation theorem does not rely on
having one dimension or on a high temperature condition. Once this is
perceived, one is tempted to conclude that chaoticity assumptions, while
important guides, cannot really be necessary for a fluctuation theorem or
its consequences to hold. Perhaps it is more natural to assume immediately
that for the purpose of computing macroscopic properties, a many particle
system in a steady state should be regarded as a Gibbs system for the
space-time histories. And we know that the reason for Gibbs distributions
has little to do with the detailed properties of the system's dynamics but
instead is based on statistical principles.4 There is finally a second, practi-
cally speaking, more important extension of the earlier results. In the
analysis below, we present a local version of the fluctuation theorem.
A mechanism for the validity of a local version was already discussed in the
recent ref. 8. This is crucial because it is only a local fluctuation theorem
that leads to observable consequences and we will see that this is quite
natural in a Gibbsian setup.

1.2. Disclaimers

Our analysis below is limited in various ways including:

1. Time (and space) is discrete: a regular lattice plays the role of
space-time. We believe that going to continuous time is a technical step
(which is not expected to be very difficult) and that this is irrelevant for the
purpose of the paper.

2. No hard-core conditions: we take a smooth potential and all
transition probabilities are bounded away from zero. In particular, this
seems problematic when dealing with dynamics subject to certain conserva-
tion laws. Again, we do not think that this is essential because the Gibbs
properties we use also hold for hard-core interactions. Extra care and con-
ditions would be needed for writing down certain formulae but we believe
they do not modify the main result.

3. Discrete spins: we deal with regular lattice spin systems. While
some compactness of phase space is nice to have around, our results
depend solely on having a large deviation principle for Gibbs states. The
extent to which such a principle holds decides on the possible extensions of
our results.
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mechanics in the theory of large deviations, see e.g., refs. 17 and 14. This must be contrasted
with the approach from the theory of dynamical systems (as summarized for example in
ref. 26). Notice that Markov partitions do not correspond to a statistical procedure; they
fully encode the dynamics.



4. No phase transitions: while the fluctuation theorem holds quite
generally, its contents can be empty when the large deviations happen on
another scale than linear in time (and spatial volume). In other words, the
corresponding rate function could fail to be strictly convex in which case
instabilities or phase transitions are present. These ``violations'' of the fluc-
tuation theorem can of course not happen when the spatial volume is finite
(for a sufficiently chaotic dynamics or for a non-degenerated stochastic
dynamics) or, for infinite systems, when we are in the ``high temperature''
regime. Such scenario's are of course well-documented for Gibbs states.

5. Steady states and time-homogeneity: we do not consider here the
(physically very relevant) problem of forces or potentials depending on
time nor do we investigate here the long time behavior of the system
started in anything other than in a stationary state. In these cases, we must
refer to the study of Gibbs states on half-spaces with particular boundary
conditions but the main points must remain intact.

We hope to include in a future publication the extensions mentioned
above. In particular, all examples that appear in ref. 19 can be systemati-
cally obtained using the one and same algorithm that will be explained
below. We will briefly illustrate such a result (for a continuous time
dynamics with a conservation law) at the end (Section 3.3).

1.3. Notation and Definitions

We restrict ourselves here to lattice spin systems. For lattice we take
the regular d+1-dimensional set Zd+1, d�0. The reason for taking d+1
is that the extra dimension refers to the time-axis. The points of the lattice
are denoted by x, y,... with x=(i, n), n # Z, i # Zd. We can read the time
by the mapping t(x)=n if x=(i, n). The distance between two points
x=(i, n), y=( j, m) # Zd+1 is |x& y|#max[ |n&m|, |i& j |] with |i& j |#
max[ |i1& j1 |,..., |id& jd |] for the two sites i=(i1 ,..., id ), j=( j1 ,..., jd ) # Zd.
The set of finite and non-empty subsets of Zd+1 is denoted by S. For
general elements of S we write 4, A,...; they correspond to (finite) space-
time regions. 4c=Zd+1 "4 is the complement of 4; |4| is the cardinality
of 4.

A space-time configuration of our lattice spin system is denoted by
_, ', !,... . This is a mapping _: Zd+1 � S with values _(x) # S in the single
site state space S which is taken finite. Ising spins have S=[+1, &1]. The
set of all configurations is 0d+1=S Zd+1

. By _E , E/Zd+1 we mean,
depending on the situation, both the restriction of _ to E as well as a con-
figuration on E, i.e., an element of S E. The configuration _4'4c is equal to
_ on 4 and is equal to ' on 4c.
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0d+1 is equipped with the product topology and is a compact space.
If we denote by Fo the set of all subsets of S, then F4=F4

o is the Borel
sigma-algebra generated by the (_(x), x # 4). We write F#FZd+1 ; (0, F)
is the measurable space of space-time configurations.

Local functions on 0d+1 are real-valued functions f which are F4-
measurable for some 4 # S. The (finite) dependence set of such a local f is
denoted by Df . A continuous function is every function on 0d+1 which is
the uniform limit of local functions. The uniform norm is denoted by
& f &#sup_ | f (_)|.

Finally, configurations and functions on 0d+1 can be translated over
{x , x # Zd+1: {x_( y)=_( y+x), {x f (_)= f ({x_). If clear from the context,
we also write fx for {x f.

We consider families of local one-to-one (invertible) transformations
?4 on S 4 where 4 will vary in same large enough subset of S (which will
be specified later on). As maps on 0d+1 they have the properties that

1. ?4(_)(x)=_(x), x # 4c (1.5)

2. ?4 b ?4=1 (1.6)

3. ?4 b {x=?4+x (1.7)

4. ?4(_)(x)=?4$(_)(x) (1.8)

for all x # 4/4$.

For every function f on 0d+1 , we write ?4 f (_)# f (?4(_)). The
(product over 4 of the) counting measure on S 4 is invariant under ?4 .
Notice that the function 2?4

f#?4 f& f satisfies ?42?4
f = &2?4

f. We
give two interesting examples of such a transformation.

Example 1.1. Take 4=4N, L a rectangular shaped region centered
at the origin with time-extension 2N+1 and spatial volume (2L+1)d. The
transformation ?4(_)( j, m)=_( j, &m), | j |�L, |m|�N time-reverses the
space-time configuration in the window 4N, L .
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Example 1.2. Take the Ising-case S=[+1, &1] and ?4(_)(x)=
&_(x), x # 4 corresponding to a spin-flip in 4 # S.

Probability measures on (0d+1 , F) are denoted by +, &,.... The corre-
sponding random field is written as X=(X(x), x # Zd+1). The expectation
of a function f is written as +( f )#� f (_) +(d_). As a priori measure we
take the uniform product measure d_ with normalized counting measure as
marginals, for which � f (_) d_#1�|S| |4| �_4

f (_4) when f is F4 -measurable.
We will be dealing with Gibbs states + in what follows; + is a Gibbs

measure with respect to the Hamiltonian H at inverse temperature ; (and
always with respect to the counting measure as a priori measure) when for
every 4 # S and for each pair of configurations _4 , '4 # S4

+[X(x)=_(x), x # 4 | X(x)=!(x), x # 4c]
+[X(x)='(x), x # 4 | X(x)=!(x), x # 4c]

=exp[&;(H(_4 !4c)&H('4 !4c))] (1.9)

for +-almost every ! # 0d+1 . The Hamiltonian H=�A UA is formally
written as a sum of (interaction) potentials UA(_)=UA(_A) with well-
defined relative energies H(_)&H(') for [x # Zd+1: _(x){'(x)] # S if
�A % x &UA &<�, x # Zd+1. Other weaker conditions than uniform absolute
summability of the potential are possible. The essential Gibbs property is
(1.9) which identifies the existence of a well-defined relative energy governing
the relative weights of configurations that locally differ. (1.9) is the infinite
volume version of the equivalent statement for finite volume Gibbs states

+4(_4 | '4c)=
1

Z;
4(')

exp _&; :
A & 4{<

UA(_4'4c)& (1.10)

with Z;
4(') the normalizing factor (partition function with ' boundary

conditions).
Traditionally, Gibbs measures give the distribution of the microscopic

degrees of freedom for a macroscopic system in thermodynamic equi-
librium. The choice of the ensemble is determined by the experimental
situation and is fixed by the choice of the relevant macro-variables. There
is however no a priori reason to exclude nonequilibrium situations from the
Gibbs formalism if considered as a procedure of statistical inference. Then
the information concerning the nonequilibrium state (like obtained from
measuring the currents) is incorporated in the ensemble. Moreover, as we
will use in Section 3, one can in many cases explicitly construct the Gibbs
states governing the space-time distribution as the path-space measure for
the dynamics. The fact that these examples concern stochastic dynamics
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should not be regarded as a return to the strongly chaotic regime but
rather as the proper way to deal with incomplete knowledge about the
microscopic configuration of a system composed of a huge number of
locally interacting components.

1.4. Main Observation

We start with the simplest observation. The rest will follow as imme-
diate generalizations (with perhaps a slightly more complicated notation).

Look at (1.9). This Gibbs property implies that the image measure of
+ under a transformation that affects only the spins in 4 is absolutely con-
tinuous with respect to + with the Boltzmann�Gibbs factor as Radon�
Nikodym derivative. Putting it simpler, it is an immediate consequence of
the Gibbs property that for all continuous functions f

+(?4 f )=+( fW4) (1.11)

with W4#exp[&; �A & 4{< (?4 UA&UA)]. But now the road is straight:
take f =W *&1

4 in (1.11) and compute

+(W *
4)=+(W *&1

4 W4) (1.12)

From (1.11) this is equal to

+(?4 W *&1
4 )=+(W 1&*

4 ) (1.13)

where the last equality follows from ?4(W *&1
4 )=W 1&*

4 . Thus, it is
immediate that Gibbs measures satisfy

+(e&*;R4)=+(e&(1&*) ;R4), * # R (1.14)

with relative energy R4#?4H&H corresponding to the transformation ?4 :

R4= :
A & 4{<

[?4UA&UA] (1.15)

We now imagine the above for a sequence of volumes 4 growing to
Zd+1 in a sufficiently regular manner (e.g., increasing cubes). Suppose now
furthermore that + is a Gibbs measure for a translation-invariant interac-
tion potential and that

R4(_)= :
x # 4

{xJ(_)+h4(_) (1.16)
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with J a bounded continuous function and &h4&�|4| � 0 as 4 becomes
infinite. This will be made explicit later on. Then, the following limit exists:

p(*J | +)#&lim
4

1
|4|

ln + _exp \&;* :
x # 4

Jx+& (1.17)

with Jx#{xJ, and, from (1.14), it satisfies

p(*J | +)= p((1&*) J | +) (1.18)

As a consequence, its Legendre transform

iJ (w | +)#sup
*

[ p(*J | +)&*w] (1.19)

satisfies

iJ (w | +)&iJ (&w | +)=&w (1.20)

It is not necessary (but it is possible) to employ the whole machinery of the
theory of large deviations for Gibbs states to understand what this means:
the probability law P4(w) for the random variable �x # 4 Jx(X )�|4| as
induced from the random field (X(x), x # Zd+1) with distribution +,
behaves (for large 4) as

P4(w)te&iJ (w | +) |4| (1.21)

and the rate function iJ (w | +) satisfies (1.20). Comparing this with (1.4), we
see we have obtained exactly the same structure as in the Gallavotti�Cohen
fluctuation theorem with practically no effort.

1.5. Plan

We first present the fluctuation theorem in a Gibbsian context without
too much reference to an underlying dynamics through which, possibly, the
Gibbs states are obtained as space-time measures. Yet, to avoid misunder-
standing, we repeat that we think of these Gibbs measures here as describing
the steady states or symbolic dynamics for some spatially-extended non-equi-
librium dynamics. They are to be thought of as distributions for the space-
time histories. Via standard thermodynamic relations, we give the relation
between the action functional satisfying the large deviation principle (fluctu-
ation theorem) and the relative entropy between the forward and the back-
ward evolution. In particular, in quadratic approximation the Green�Kubo
formula appears. Time enters explicitly in Section 3 where via the example of
probabilistic cellular automata the general philosophy is illustrated.
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2. FLUCTUATION THEOREM FOR GIBBS STATES

In the present setup, we have no a priori reason to prefer one lattice
direction over another and we fix the family of increasing cubes 4n of side
length n # N0 centered around the origin in which we are going to apply the
transformations ?4n

#?n having the properties described in Section 1.3. For
every A # S we write An for the smallest cube 4n (with n=n(A)) for which
A/4n .

2.1. Symmetry Breaking Potential

In what follows we simply set 0=0d+1 . A potential U is a real-valued
function on S_0 such that UA # FA (i.e., only depending on the spins
inside A) for each A # S (put U<#0). It describes the interaction between
the spins in the region A. We consider a family of m+1 interaction poten-
tials (U :

A)A , :=0,..., m. We assume translation-invariance, meaning that

U :
A(')=U :

A+x({x') (2.22)

for all A # S, x # Zd+1, ' # 0. As usual we also take it that the total inter-
action of a finite region with the rest of the lattice is finite, i.e., we assume
that the potential is uniformly absolutely summable:

:
A % 0

&U :
A &<� (2.23)

(This assumption of uniformity is not strictly needed but it avoids irrele-
vant technicalities. Similarly, hard core interactions are also not excluded
but extra care and assumptions would be needed.) Given the family of
transformations ?n , we define the relative energies

R:
n# :

A & 4n{<

(?nU :
A&U :

A), :=0,..., m (2.24)

We make a difference between the potential U 0 and the U :, :=1,..., m
from their behavior under the ?n . We assume that U 0 is invariant under
the ?n in the sense that ?n U 0

A=U 0
A whenever n�n(A) implying that

lim
n

&R0
n &

|4n |
=0 (2.25)

The reason for taking m>1 is to allow for and to distinguish between
possibly different mechanisms for breaking the symmetry of the reference
interaction U 0.
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We define the current associated to the symmetry breaking interaction
U :, :=1,..., m to be

J :
x#lim

n
:

x # A/4n

1
2 |A|

(?n(A)U :
A&U :

A) (2.26)

J:
x is a continuous function on 0 and, from (2.22), J :

x(')=J :
0({x'). The

term ``current'' is suggestive for interpreting (2.26) as the real current at the
space-time point x associated to some driving of a reference steady state
& thereby breaking the time-reversal symmetry in the case of Example 1.1,
see next section. We take & to be a Gibbs state with respect to the inter-
action U 0, i.e., with formal Hamiltonian

H0#:
A

U 0
A (2.27)

(see (1.9)) for which the ?-symmetry is unbroken:

& b ?n=& (2.28)

As a consequence, the currents (2.26) vanish identically in that state:

&(J :
x)=0, :=1,..., m (2.29)

The perturbed or driven state is denoted by +. It is a translation-invariant
Gibbs state at inverse temperature ; with respect to the formal
Hamiltonian

H#H 0+ :
m

:=1

E :H: (2.30)

where the H: are built (as in (2.27)) from the interaction potentials U : and
where the E: are real numbers parameterizing the strength of a symmetry
breaking or driving force. As before, in the definition of Gibbs states, we
always take the normalized counting measure as a priori measure, see (1.9).

2.2. Fluctuation Theorem

Theorem 2.1. Suppose that + is a translation-invariant Gibbs state
for the translation-invariant potential (UA=U 0

A+�m
:=1 E:U :

A)A as in the
preceding subsection. The limit

p(*, E )#&lim
n

1
|4n |

ln +[e&; �x # 4n
� m

:=1 *:J:
x] (2.31)
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exists and satisfies

p(*, E )= p(2E&*, E ) (2.32)

for every *#(*1 ,..., *m) and E#(E1,..., Em) # Rm.

Proof. The existence of the limit is a standard result of the Gibbs
formalism, see, e.g., refs. 12, 4, and 27. As announced via (1.11) the main
observation leading to (2.32) is that

+(?n f )=+ \exp _&; :
A & 4n{<

(?nUA&UA)& f + (2.33)

simply because + is a Gibbs state for the potential (UA) at inverse tem-
perature ;. Therefore, taking numbers h: , :=1,..., m and f =exp
[; �m

:=1 (1&h:) E :R:
n] in that formula,

+ \exp _&;R0
n&; :

m

:=1

h:E :R:
n&+

=+ \exp _&;R0
n&; :

m

:=1

E :R:
n& exp _; :

m

:=1

(1&h:) E :R:
n&+

=+ \exp _&; :
m

:=1

(1&h:) E :R:
n&+ (2.34)

Now,

R:
n=2 :

x # 4n

J :
x&I1+I2 (2.35)

where both

I1# :
x # 4n

:
A % x, A & 4c

n{<

1
|A|

(?n(A) U :
A&U :

A) (2.36)

and

I2# :
A & 4n , A & 4c

n{<

(?nU :
A&U :

A) (2.37)
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are small of order o( |4n | ) because of (2.23): &Ii&�|4n | � 0 as n goes to
infinity, i=1, 2. Upon inserting (2.35) into (2.34) and taking h:=*:�2E:

(for E:{0), we get

1
|4n | } ln

+(exp[&; �x # 4n
�m

:=1 *:J :
x])

+(exp[&; �x # 4n
�m

:=1 (2E :&*:) J :
x]) } (2.38)

going to zero as n A �. This is exactly what was needed. K

Remark 1. Gibbs states satisfy a large deviation principle, see, e.g.,
refs. 17 and 4 for additional references. As a result, (2.32) implies
(1.21)�(1.20). We do not add a more precise formulation here.

Remark 2. Related to this, as is clear from the proof, the essential
property is that the functionals [log(d(+ b ?4)�d+): 4 # S] satisfy a large
deviation principle under +. We speak about the (somewhat more restricted)
Gibbs property because, in all cases we have in mind, the large deviations
arise from Gibbsianness of the random field.

Remark 3. The theorem above provides a local version of the fluc-
tuation theorem since the measure + lives on a much larger (in fact,
infinite) volume than the size of the observation window 4n . The relations
(1.14) and (2.34) are identities exactly verified for the finite volumes 4n .
This is similar to the local fluctuation theorem of ref. 8. Notice also that the
limit p(*, E ) exists and remains unchanged if instead of taking the sequence
of cubes 4n we take volumes 4 growing to Zd+1 in the van Hove sense,
see, e.g., refs. 12, 4, and 27. This will be exploited in the next section
(Theorem 3.1) to separate time from the spatial volume.

Remark 4. The fluctuation theorem is formulated here (and else-
where) on a volume-scale, anticipating large deviations which are exponen-
tially small in the volume, see (1.21). This is certainly the typical behavior
at high temperatures. However, the same reasoning of the proof above
remains equally valid for other��less disordered��regimes where the large
deviations may happen on another scale. As an example, suppose that

a(*, E )#&lim
n

1
nd ln +[e&(;�n) �x # 4n

�m
:=1 *: J:

x] (2.39)

Then, remembering that 4ntnd+1, it also satisfies

a(*, E )=a(2E&*, E ) (2.40)
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Such a scaling is applied in the study of large deviations in the phase
coexistence regime where the probability of a droplet of the wrong phase
is only exponentially small in the surface of that droplet.

2.3. Thermodynamic Relation

As mentioned in the introduction, the original context of the fluctua-
tion theorem concerned the large deviations in the entropy production rate
of a dynamical system. Since we have not specified any dynamics here, we
must postpone a related discussion to the next section. Yet, we can com-
pare with the thermodynamic potentials.

To start define the energy function

80(U )# :
A % 0

UA

|A|
(2.41)

and its translations 8x(U )(')=80(U )({x'). We define the free energy den-
sity for the interaction U as

P(U )#lim
n

1
|4n |

ln :
_ # 04n

exp _&; :
A/4n

UA(_)& (2.42)

This coincides with

P(U )=lim
n

1
|4n |

ln Z;
4n

(') (2.43)

of (1.10) for all boundary conditions '.
Finally, the entropy density of a translation-invariant probability

measure + is

s(+)#&lim
n

1
|4n |

:
_ # 04n

+n[_] ln +n[_]�0 (2.44)

where +n[_] is the probability for the measure + to find the configuration
_ in the box 4n (and 0 ln 0=0). The relative entropy density between two
translation-invariant probability measures + and \ (with \n(_)=0 implying
+n(_)=0) is

s(+ | \)#lim
n

1
|4n |

:
_ # 04n

+n[_] ln
+n[_]
\n[_]

�0 (2.45)
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If + is a translation-invariant Gibbs measure (at inverse temperature ;) for
the interaction U, then

P(U )=s(+)&;+(80(U )) (2.46)

For a given interaction (UA) we also like to have around the free energy
functional F(U, \) defined for translation-invariant probability measures
\ by

F(U, \)#s(\)&;\(80(U )) (2.47)

We have, besides F(U, +)=P(U ) for the Gibbs measures + with respect
to U, see (2.46), that

P(U )>F(U, \) (2.48)

for all translation-invariant probability measures \ which are not Gibbs
measures for U at inverse temperature ; (Gibbs' variational principle).

The ?-transformed interaction potential ?U is defined via

?UA=?n(A)UA (2.49)

and the ?-transformed measure ?+ is obtained by its expectations for all
local functions f :

?+( f )=+ b ?n( f ) (2.50)

for n=n( f ) so that Df/4n . Clearly, P(?U )=P(U ) by the assumed
?-invariance of the counting measure, see (1.3). (This also follows from
observing that &P(?U )+P(U )= p(2E, E )= p(0, E )=0 by (2.32) and
(2.31).) For the same reason, s(?+)=s(+) and if + is a Gibbs measure
for U, then ?+ is a Gibbs measure for ?U (and vice versa). (To avoid tri-
vialities, it is understood that the interaction ?U is not physically equiv-
alent with U as long as some E:{0.)

We next show that the averaged current (whose fluctuations are
investigated in Theorem 2.1) is always (strictly) positive as it equals a
relative entropy density. To link it also to a free energy production we must
require that the free energy P(U+t(?U&U )) is differentiable with respect
to t at t=0. For this (see, e.g., ref. 12), it suffices e.g., that

:
A % 0

|A|&U 0
A&, :

m

:=1

E : :
A % 0

|A|&U :
A&<1 (2.51)
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Proposition 2.1. For the Gibbs measure +{?+ of Theorem 2.1,

s(?+ | +)=s(+ | ?+)=2; :
m

:=1

E:+(J :
0)>0 (2.52)

and, under the assumption (2.51), is also given via

:
m

:=1

E :+(J :
0)=&

1
2;

�
�t

P(U+t(?U&U ))(t=0) (2.53)

Proof. The positivity follows from the variational principle:

s(+)&;+(80(U ))=P(U )>F(U, ?+)=s(+)&;?+(80(U )) (2.54)

As is well known the relative entropy (2.45) can be rewritten as a difference
of free energies: s(?+ | +)=P(U )&F(U, ?+). We can now use that

;+(80(?U )&80(U ))=&
�
�t

P(U+t(?U&U ))(t=0) (2.55)

is exactly equal to 2; �m
:=1 E:+(J :

0), as required. K

Remark 1. The positivity of (2.52) should be compared with (1.3).
The positivity of the entropy production is discussed in refs. 23 and 24. The
positivity of (2.52) just follows here from the Gibbs' variational principle:
with s* n#� E : �x # 4n

J :
x , for +-almost every _, s* n(_)�|4n | � s(+ | ?+)�2;

>0 where the almost sure convergence assumes that + is a phase. That
s(+ | ?+) has something to do with entropy production will become clear
in the next section when a dynamics and the time-reversal operation is
considered.

Remark 2. Thinking about s(+ | ?+) as entropy production, (2.52)
gives the usual bilinear expression in terms of thermodynamic fluxes and
forces. Remember that the dependence of p(*, E ) on E in (2.31) comes
from the state +. The E: correspond to field strengths or amplitudes
producing energy- or particle flow. Of course, on the formal level above,
the distinction must remain arbitrary and one can of course include the E:

in the potentials U :
A .

2.4. Green�Kubo Formula

It has been observed in other places, (16, 19, 7) that the fluctuation
theorem quite directly gives rise to various familiar formulae of linear

382 Maes



response. We will not pursue this matter here very far except for repeating
the simplest derivations.

Assuming smoothness of the free energy in the external fields, we dif-
ferentiate (2.32) with respect to E # and *: , :, #=1,..., m at E=*=0:

�
�E #

�
�*:

p(0, 0)=&
�

�E #

�
�*:

p(0, 0)&2
�

�*#

�
�*:

p(0, 0) (2.56)

On the other hand,

�
�*:

p(0, E )=;+(J :
0) (2.57)

while

�
�*#

�
�*:

p(0, 0)=&;2 :
x

&(J :
0 J #

x) (2.58)

Conclusion,

�
�E# +(J :

0)(E=0)=; :
x

&(J :
0J #

x) (2.59)

and the change in relative entropy s(+ | ?+) (see (2.52)) from Proposi-
tion 2.1 is in quadratic approximation for small E given by

s(+ | ?+)=2;2 :
:, #

E :E # :
x

&(J :
0J #

x) (2.60)

Equation (2.59) is a standard Green�Kubo relation while (2.60) expresses
the relative entropy density s(+ | ?+) (or change in free energy) in terms of
the current-current correlations (with the obvious analogues of Onsager
symmetries). In conclusion, we have identified a (model-dependent) con-
tinuous function

S4 (_)#:
:

E:J :
0(_) (2.61)

with ?S4 =&S4 , +(S4 )>0, &(S4 )=0 and symmetric response matrix

�
�E # + \ �

�E : S4 + (E=0)=; :
x

&(J :
0J #

x) (2.62)

Symmetries in higher order terms can be obtained by taking higher
derivatives of the generating formula (2.32).
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The notation S4 should not be read as a time-derivative (change of
entropy in timed. More appropriate will be to regard +(S4 )�2 as the limit
(Sf&Si)�T as time T goes to infinity of the total change of entropy Sf&S i

in a reservoir during the nonequilibrium process. The reservoir is initially
in equilibrium with thermodynamic entropy Si and after absorbing the heat
dissipated by the nonequilibrium process it reaches a new equilibrium with
entropy Sf . We will come back to this once time has been explicitly intro-
duced (in Section 3).

3. FLUCTUATION THEOREM FOR PCA

PCA (short for probabilistic cellular automata) are discrete time
parallel updating stochastic dynamics for lattice spin systems. They are
used in many contexts but we see them here as interesting examples of non-
equilibrium dynamics. We refer to refs. 13 and 18 for details and examples
and we restrict ourselves here to the essentials we need.. We work with
time-homogeneous translation-invariant nearest-neighbor PCA which are
specified by giving the single-site transition probabilities

0<pi, n(a | _)= pi (a | _( j, n&1), | j&i |�1)<1, a # S, _ # 0d+1

(3.63)

This defines a Markov process (Xn)n=0, 1,... on 0d for which for all finite
V/Zd,

Prob[Xn(i)=a i , \i # V | Xn&1]= `
i # V

pi (ai | Xn&1( j), |i& j |�1), ai # S
(3.64)

with some given initial configuration X0=! # 0d . Notice that we have kept
the notation _ for a general configuration on the space-time lattice.
Remember that x=(i, n) # Zd+1 stands for a space-time point with time-
coordinate n at site i # Zd.

The ?4 are restricted to time-reversal transformations and the volumes
4 are to grow first in the time-direction (for a fixed spatial window).

3.1. Steady State Fluctuation Theorem

If we take a translation-invariant stationary state \ of a PCA as
above, then its Markov extension defines a translation-invariant Gibbs
measure + for the (formal) Hamiltonian

H(_)=&:
i, n

ln pi, n(_(i, n) | _( } , n&1)) (3.65)
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We refer to refs. 13 and 18 for a precise formulation. + describes the dis-
tribution of the space-time configurations in the steady state and its restric-
tion to any spatial layer is equal to the stationary state \ we started from.
To characterize \, one must study the projection of + to a layer (see ref. 20
for a variational characterization of such a projection).

Since + is Gibbsian we can try applying the theory of the previous
section. Most interesting is to consider a sequence of rectangular boxes
4L, N#[x=(i, n) # Zd+1=Zd_Z: |i |�L, |n|�N ]. The idea is that we
wish to keep the spatial size L much smaller than the time-extension
N>>L. As transformation we take ?4L, N

#?L, N corresponding to a time-
reversal:

?L, N_(i, n)=_(i, &n), |n|�N, |i |�L (3.66)

and ?L, N_(i, n)=_(i, n) whenever (i, n) � 4L, N .
Define the current

Ji, n(_)#ln pi (_(i, n) | _( } , n&1))&ln pi (_(i, n&1) | _( } , n)) (3.67)

Notice that in contrast with the previous section, we do not specify here
the unperturbed state (but one can always take some homogeneous
product measure) and we take m=1=2E for simplicity. Ji, n is a local func-
tion and it is the space-time translate of J0 . In the same way as in (2.24),
we define

RL, N(_)#H(?L, N_)&H(_) (3.68)

Starting from (3.65) RL, N can be written out as a finite sum but most
important is that

RL, N(_)= :
N&1

n=&N+1

:
|i |�L&1

Ji, n(_)+GL, N(_) (3.69)

where

&GL, N&�c(2N+1)(2L+1)d&1+c$(2L+1)d�c(d ) NLd&1 (3.70)

with a constant c(d ) depending on the dimension d and on the transition
probabilities (3.63). We are therefore in a position to repeat the fluctuation
Theorem 2.1 in that context.
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Theorem 3.1. Take L=L(N )�N growing to infinity as N A �.
The limit

e(*)#&lim
N

1
|4L, N |

ln + \exp _&* :
x # 4L&1, N&1

Ji, n &+ (3.71)

exists for all real * and

e(*)=e(1&*) (3.72)

Moreover, for fixed L,

eL, N(*)#&
1
N

ln + \exp _&* :
x # 4L&1, N&1

Ji, n&+ (3.73)

(which, generally, is of order Ld) satisfies

|eL, N(*)&eL, N(1&*)|�c(*, d ) Ld&1 (3.74)

uniformly in N A �.

Proof. The proof is a copy of the proof of Theorem 2.1. As before,
we have automatically, from the Gibbs property (as in (1.14)), that

+(exp[&*RL, N])=+(exp[&(1&*) RL, N]) (3.75)

We now substitute (3.69) and use the estimate (3.70) to perform the
limits. K

Remark 1. One may wonder about the existence of the limit
eL(*)#limN eL, N(*) for fixed L. This is certainly expected when the steady-
state + is a high temperature Gibbs state. In that case, the limit
limL eL(*)�Ld=limL eL(1&*)�Ld satisfies (3.72).

Remark 2. Some quite similar results were discussed already in
ref. 8. There however the dynamics was deterministic (weakly coupled
strongly chaotic maps). There again, the methods of refs. 2, 3, 22, and 15
can reduce the problem to a higher dimensional symbolic dynamics and the
methods of the previous section are ready for use.

3.2. Entropy Production

The measure + gives the probability distribution of the space-time
histories in a steady-state. It is therefore natural to consider s(+) (see
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(2.44)) as its specific entropy rate (i.e., entropy per unit volume and per
unit time). In terms of the stationary state \ we have (see ref. 13) that

s(+)=&\ \ :
a # S

p0(a | _( } , &1)) ln p0(a | _( } , &1))+ (3.76)

On the other hand, the free energy density vanishes identically for PCA
(because of the normalization in (3.65), see refs. 13 and 18), so that, from
(2.54),

P(U )=0, P(U )&F(U, ?+)=&s(+)+;?+(80(U )) (3.77)

Hence, still in the notation of the previous section, whenever P(U )=0
(which is verified for PCA),

&s(+ | ?+)=s(+)&;?+(80(U )) (3.78)

(This formula is not correct when we replace in it + by ?+.) That is inter-
esting because we found that now s(+ | ?+)>0 is minus the specific entropy
rate s(+) modulo a term which is linear in +. Writing this out in our pre-
sent notation, this is nothing else than

&+(J0)=&\ \ :
a # S

p0(a | _( } , &1)) ln p0(a | _( } , &1))

&+(&ln p0(_(0) | _( } , 1))+ (3.79)

The first term to the right is the specific entropy rate (3.76) (always
positive) and the second term (linear in +) subtracts from this exactly so
much that the net-result to the left vanishes in the case of time-reversal
symmetry (detailed balance). Of course, as in Proposition 2.1 we have an
equality between the averaged current in the steady state + and the relative
entropy s(+ | ?+) (remember that we took m=1=2E!). We can therefore
conclude that indeed +(J0) or s(+ | ?+) must be regarded as the (positive)
entropy production by our dynamics. The current associated to the break-
ing of time-reversal symmetry gives rise to nothing else than the local (in
space-time) entropy production whose fluctuations we have investigated in
Theorems 2.1 and 3.1. The points made in Section 2.4 related to the Green�
Kubo formula remain unaltered and we do not repeat them here.

Yet, to obtain a physically inspiring picture, we should connect the
above analysis to measurable quantities. The (second part of the) second
law of thermodynamics connects the thermodynamic entropy of an initial
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and final equilibrium state after some thermodynamically irreversible pro-
cess has taken place. In an adiabatic non-quasi-stationary process the
entropy can only increase: Sf >S i . If we now were to rerun the process in
the opposite direction, simply by (thermodynamically) inverting all the
currents (by changing the sign of all gradients of the intensive variables),
again the entropy would increase and by the same amount as before
(s(+)=s(?+)) and we would reach a new equilibrium with entropy equal
to Si+2(Sf&Si). While we lack at this point a more formal understanding,
we believe that our entropy production exactly measures that difference:
[Sf &S i ]&[S i &Sf ]=2(Sf &Si )=s(+ | ?+)>0. More generally and
depending on the physical realization of the process, these considerations must
apply to the relevant thermodynamic potential and ``entropy production'' must
for example be replaced by ``work done'' or ``free energy production.''

We will further illustrate this by an example in the following subsec-
tion but it is interesting to remark already that s(+ | ?+) reproduces, via the
formal analogies on the level of the variational principle (both for Gibbs
and for SRB states), the entropy production in the context of the theory of
dynamical systems. There we have that the entropy production is given by
(1.3) with \(S4 ) equal to the sum of the positive Lyapunov exponents with
respect to ,&1 minus the sum of positive Lyapunov exponents with respect
to ,. If \ is singular with respect to d! and has no vanishing Lyapunov
exponent, then \(S4 )>0, see ref. 23. In our case, s(+ | ?+)=;?+(80(U ))&
;+(80(U ))=P(U )&F(U, ?+)>0.

3.3. Illustration

We take here a closer look at the current (3.67) for Markov chains.
The spatial degree of freedom i # Zd has now disappeared and we must
study

Jn(_)#ln p(_(n) | _(n&1))&ln p(_(n&1) | _(n)) (3.80)

for _ # 01 and transition probabilities

Prob[Xn=a | Xn&1=b]= p(a | b), a, b # S (3.81)

for the stationary S-valued Markov chain Xn . The steady state + is now a
homogeneous one-dimensional Gibbs measure and its single-time restric-
tion is the stationary measure \ on S: �b p(a | b) \(b)=\(a), a # S.

The steady state expectation of the current (3.80) is

+(J )=:
b

\(b) :
a

p(a | b)[ln p(a | b)&ln p(b | a)] (3.82)
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Now use that the transition probabilities q( } | } ) for the reversed chain
(Yn#X&n)n (with distribution ?+ but with the same stationary measure \)
are given by

q(a | b)#Prob[Xn=a | Xn+1=b]= p(b | a)
\(a)
\(b)

(3.83)

Since �b \(b) �a p(a | b) ln \(b)=�b \(b) ln \(b)=�b \(b) �a p(a | b)_
ln \(a), we can substitute (3.83) into (3.82) (q(a | b) for p(b | a)) with no
extra cost and we obtain

+(J0)=\(S( p | q)) (3.84)

where

S( p | q)=:
a

p(a | } ) ln
p(a | } )
q(a | } )

�0 (3.85)

is the relative entropy between the forward and the backward transition
probabilities. (3.85) is zero only if the Markov chain is time-reversible (in
which case +=?+). Then, (3.83) for q(a | b)= p(a | b) becomes the detailed
balance condition. Relation (3.84) is nothing but (2.52) specified to the
context of Markov chains.

A second less trivial and physically interesting illustration can be taken
from a model of hopping conductivity. It is a bulk driven diffusive lattice
gas where charged particles, subject to an on-site exclusion, hop on a ring
in the presence of an electric field. The configuration space is 01=[0, 1]T

with !(i)=0 or 1 depending on whether the site i # T is empty or occupied.
We take for T the set [1,..., l] with periodic boundary conditions. To each
bond (i, i+1) in the ring and independently of all the rest there is
associated a Poisson clock (with rate 1). If the clock rings and !(i)=1,
!(i+1)=0 then the particle at i jumps to i+1 with probability p. If on the
other hand, !(i)=0, !(i+1)=1 the particle jumps to i with probability q.
Therefore, the ``probability per unit time'' to make the transition from ! to
!i, i+1 (in which the occupations of i and i+1 are interchanged) is given by
the exchange rate

c(i, i+1, !)= p!(i)(1&!(i+1))+q!(i+1)(1&!(i)) (3.86)

and should be thought of as a continuous time analogue of (3.63). It is
natural to call E=ln p�q the electric field. This model is called the asym-
metric simple exclusion process and it is also considered in ref. 19. Strictly
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speaking, it is not a PCA but a continuous time process with sequential
updating. However, since it is a jump process, the change with respect to
the PCA of above just amounts to randomizing the time between suc-
cessive transitions.

Each uniform product measure \ is time-invariant for this process and
we consider the steady state + starting in this invariant state. If we now
consider a realization _ of the process in which at a certain time, when the
configuration is ! # 01 , a particle hops from site i to i+1, then the time-
reversed trajectory shows a particle jumping from i+1 to i. The contribu-
tion of this event to the entropy production is therefore

ln c(i, i+1, !)&ln c(i, i+1, !i, i+1)

=E[!(i)(1&!(i+1))&!(i+1)(1&!(i))] (3.87)

This formula is the continuous time analogue of (3.80) or (3.67) (but we do
not take E=1�2 here) with ! the configuration right before the jump and
!i, i+1 the configuration right after the jump in the trajectory _. Of course,
this jump in _ itself happens with a rate c(i, i+1, !). We see therefore that
the derivative of (3.87) with respect to E has expectation

+(Ji, t)=\(c(i, i+1, !)[!(i)(1&!(i+1))&!(i+1)(1&!(i))])

=( p&q) u(1&u) (3.88)

for u#\(!(i)) the density. (3.88) is indeed the current as it appears in the
hydrodynamic equation, here the Burgers equation, through which a
density profile evolves. The fluctuations of the particle current satisfy (2.32)
or (3.72) (with E=1�2), see also ref. 19. The entropy production (as in
(3.84)�(3.85)) is

1
2

s(+ | ?+)=\ \c(i, i+1, !) ln
c(i, i+1, !)

c(i, i+1, !i, i+1)+=E( p&q) u(1&u)

(3.89)

which is the field times the current and is left invariant by changing E into
&E. If, to be specific, we take p=1�(1+e&E)=1&q, then, in quadratic
approximation,

1
2s(+ | ?+)=u(1&u) E 2 (3.90)

which is the dissipated heat through a conductor in an electric field E with
Ohmic conductivity u(1&u)=+(J 2

0)(E=0)=\(c(0, 1, !)[!(0)(1&!(1))&
!(1)(1&!(0))]2) given by the variance of the current. This model (together
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with the models discussed in ref. 19) illustrates that the methods exposed in
the present paper are not restricted to just PCA. We have restricted us here
to a somewhat informal treatment of the aspects concerning the entropy
production in the model as it will be included in a future publication
dealing with the local fluctuation theorem.(21)

4. CONCLUDING REMARK

It does not seem unreasonable that Gibbs' variational principle deter-
mining the conditions of equilibrium can be generalized to certain non-
equilibrium conditions. In this note we have shown that describing the
steady state via the standard methods of the Gibbs formalism leads directly
to the fluctuation theorem. This is true close or far from equilibrium
because it follows quite generally from the defining Gibbs property itself.
From this ``Gibbsian'' point of view, applying the local fluctuation theorem
to various specific models is to add specific observable consequences to the
studies of E. T. Jaynes.(14)
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